

In-Space Remote Sensing: Overview of the Revolutionary Aerospace Systems and Concepts (RASC) Program

Warren Wiscombe Code 913 NASA Goddard Space Flight Center

Meeting Agenda

- 8:30–8:45 Introduction (Wiscombe)
- 8:45-9:00 Plan for the RASC study and workshop (Heun)
- 9:00-9:40 Overview of stratospheric platforms (Nock)
- 9:40-10:00 Break
- 10:00–10:30 Instructions for breakout sessions (Pankine)
- 10:30-12:00 Begin breakout sessions (all)
- 12:00-13:00 Lunch
- 13:00–14:30 Finish breakout sessions (all)
- 14:30–15:30 Prepare breakout session reports (all)
- 15:30-15:45 Break
- 15:45-17:00 Breakout session reports (Heun, moderator)

Primary Objective

to develop revolutionary aerospace systems concepts for in-space remote sensing

Overarching Mission

- The overarching mission is to use the revolutionary aerospace mission architectures and systems concepts as the foundation for identification of common technology and infrastructure requirements for in-space remote sensing
- Common technology areas exist between the current set of mission studies. Key technology areas will be assessed through additional focused assessments (when resources are available):
 - Formation flying
 - Inter-vehicle communications
 - Metrology
 - Autonomous operations
- Infrastructure requirements will be fed to the other RASC groups to provide input to their concept definitions as well as to leverage their analysis results

RASC Objectives

- Enable future NASA missions by developing
 - aerospace systems concepts
 - technology requirements
- Apply a "top-down" perspective to explore new mission capabilities and discover "What's possible"
- Maximize the benefits of revolutionary capabilities that span across NASA Enterprises
- Initial focus: identifying and evaluating revolutionary systems concepts

RASC "Top-Down" Methodology

- Using a 25-year vision perspective, identify the desired new capabilities derived from NASA Enterprise objectives/priorities
- Define integrated systems approaches (architectures) and their required functional capabilities or engineering challenges
- Develop revolutionary systems concepts to provide these capabilities
- Conduct systems trade studies to define the enabling technology requirements and levels of performance needed to meet the challenges
- Recommend the most promising revolutionary concepts with their integrated system payoffs and key enabling technology requirements

Study Missions

The study missions currently include Earth observation, space exploration, and comet and asteroid detection and protection systems/architectures

Space Based Imaging Interferometry

- David Leisawitz, GSFC
- Michaelson and Fizeau interferometers installed on booms, tethers, and free flyers will be assessed to meet Code S and Code M key science objectives

Fresnel Lens System for Gamma Ray Astronomy: Micro-arcsecond Imaging of Black Hole Event Horizons

- Neil Gehrels, GSFC
- Assessment of a mission concept that includes a Fresnel lens on one spacecraft and a gamma-ray detector on a second spacecraft 10M km away

Study of Revolutionary Earth Sciences Architecture for Atmospheric Chemistry, Earth Radiation Balance, and Geomagnetism Measurements

- Dr. Warren Wiscombe, GSFC
- A range of advanced platforms required for making Earth science measurements in the upper stratosphere will be investigated
- The revolutionary technologies necessary for each platform needed to make the desired measurements will be identified

Comet and Asteroid Protection System (CAPS)

- Dan Mazanek, LaRC
- Preliminary definition of CAPS detection concepts, Near-Earth Objects (NEO) orbit modifications, and an overall architectural concept for CAPS implementation

Planetary Body Maneuvering

- Dr. George Schmidt, MSFC
- Objective: examine simple, medium, and advanced techniques for moving small planetary bodies

Relationships Between Study Missions

Each of the five planned Group 4 study missions will be stand-alone activities; however, results of several studies will feed other Group 4 studies as well as assessments of common technologies

Summary

- Technologies and infrastructure for conducting revolutionary in-space remote sensing will be investigated
- The study missions currently include Earth observation, space exploration, and comet and asteroid detection and protection
- Key technology areas will be assessed through additional focused assessments (when resources are available):
 - Formation flying
 - Inter-vehicle communications
 - Metrology
 - Autonomous operations
- Infrastructure requirements will be input to other RASC groups and the associated results will be leverage